Stokes Wood Primary School

 Calculation Policy

Reception Addition

Maths for young children should be meaningful. Where possible, concepts should be taught in the context of real life.

Counting and Combining sets of Objects to 20 Combining two sets of objects e.g. Numicon, bundles of straws, Dienes apparatus, multi-link cubes, bead strings, ten frames, etc which will progress onto adding on to a set.

Understanding of counting using knowledge of number bonds
Add by Using Number Bonds
(1)

Understanding of counting on (supported by models and images).
$7+4$
$\begin{array}{lllllllllllll}\risingdotseq & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$
If appropriate, progress from using number lines with every number shown to number lines with significant numbers shown.

Partitioning to add

Children should be able to separate 2 digit numbers to add the ones then add the tens.

$+=$ signs and missing numbers

Children need to understand the concept of equality before using the ' $=$ ' sign. Calculations should be written either side of the equality sign so that the sign is not just interpreted as 'the answer'.
$2=1+1$
$2+3=4+1$
Add by making 10

It is valuable to use a range of representations (also see y1). Continue to use objects, number lines and ten frames to develop understanding of commutative law and of:

Partitioning and bridging through 10.
The steps in addition often bridge through a multiple of 10
e.g. Children should be able to partition the 7 to relate adding the 2 and then the 5 .
$8+7=15$

Adding 9 or 11 by adding 10 and adjusting by 1 e.g. Add 9 by adding 10 and adjusting by 1 $35+9=44$

Towards a Written Method
Partitioning in different ways and recombine to 100 $47+25$

72
HHH

Standard column method:

Missing number problems e.g $14+5=10+\square$ 32

Year 3 Addition

Partition into tens and ones

Partition both numbers and recombine.
Count on by partitioning the second number only e.g.
$247+125=247+100+20+5$
$=347+20+5$
$=367+5$
= 372
Children need to be secure adding multiples of 100 and 10 to any three-digit number including those that are not multiples of 10 .

Towards a Written Method to 1000

Standard column addition can be modelled with place value counters, objects and pictorial representations.

Leading to children understanding the renaming between tens and ones (carrying/exchanging).

Introduce the Bar Method

Missing number problems using a range of equations as in Year 1 and 2 but with appropriate, larger numbers.

Reception Subtraction

Maths for young children should be meaningful. Where possible, concepts should be taught in the context of real life.

Year 1 Subtraction	Year 2 Subtraction	Year 3 Subtraction
Understand subtraction as crossing out (take-away) (within 20): $7-2=5$ Using knowledge of number bonds to subtract (within 20): Call this whole/part Understand subtraction as counting back (within 20): Use concrete objects and pictorial representations. Progress from using number lines with every number shown to number lines with significant numbers shown. Subtract 3 from 15. Partitioning to subtract Children should be able to separate 2 digit numbers to subtract from the tens then add the leftover ones. Missing number problems e.g. $7=\square-9 ; 20$ - $=9 ; 15-9=\square-\quad=11 ; 16-0=$	It is valuable to use a range of representations (also see Y1). Continue to use dienes, number lines, ten frames and objects to model take-away and difference. E.g. The link between the two may be supported by an image like this, with 47 being taken away from 72, leaving the difference, which is 25 . Towards written methods within 100 Record addition and subtraction in columns, the numbers may be represented with objects and pictorial representations. E.g. 23-5. Progress to renaming (regrouping). Missing number problems, including use of inverse relationships e.g. 52-8= \quad; $-20=25 ; 22=\square-21$; $6+\square+3=11$ How far is she from the finishing line? $50-35=15$	Mental methods should continue to develop, supported by a range of models and images, including the number line Children should make choices about which strategy to use, depending on the numbers involved. Written methods (progressing to 3-digits) Continue to model column subtraction with no renaming (re-grouping/decomposition), modelled with objects such as place value counters, Numicon and Dienes. This will lead to renaming (borrowing), modelled using place value counters or Dienes. Introduce the Bar Method (See Appendix 1). Missing number problems, including use of inverse relationships e.g. $\square=43-27 ; 145-\square=$ 138; 274-30 = $; 245-\square=195 ; 532-200=\square$; 364-153 =

Reception Multiplication

Maths for young children should be meaningful. Where possible, concepts should be taught in the context of real life.

Reception Division and fractions

Maths for young children should be meaningful. Where possible, concepts should be taught in the context of real life.

GUIDANCE / MODELS AND IMAGES	KEY VOCABULARY
The ELG states that children solve problems, including doubling, halving and sharing. Children need to see and hear representations of division as both grouping and sharing. Division can be introduced through halving. Children begin with mostly pictorial representations linked to real life contexts: Grouping model Mum has 6 socks. She grouped them into pairs - how many pairs did she make? Sharing model I have 10 sweets. I want to share them with my friend. How many will we have each? Children have a go at recording the calculation that has been carried out.	halve share, share equally Qne each, two each, three each... group in pairs, threes... tens equal groups of divide divided by divided into left, left over

FRACTIONS

GUIDANCE / MODELS AND IMAGES	KEY VOCABULARY
Although not explicit in the Development Matters document, the sharing model is a useful way of introducing young children to fractions and calculating with fractions.	As division vocabulary plus: fraction
Setting the problems in real life context and solving them with concrete apparatus will support children's understanding.	half halves
"I have got 5 bones to share between my two dogs. How many bones will they get each?" ."	third
Children have a go at recording the calculation that has been carried out. $21 / 2+21 / 2=5$	thirds

Recall division facts for multiplication tables up to 12×12.

Sharing, Grouping, Repeated Subtraction and Inverse

Children will continue to explore division as sharing, grouping, repeated subtraction and inverse until they have a secure understanding. Continue to use pictorial representations and Bar Method to solve word problems in context.

Children should progress in their use of written division calculations:

- Using tables facts with which they are fluent
- Experiencing a logical progression in the numbers they use, for example:

1. Dividend just over 10 times the divisor, for example, $84 \div 7$
2. Dividend over 100 times the divisor, for example, $840 \div 7$
3. Dividend over 20 times the divisor, for example, $168 \div 7$

All of the above stages should include calculations with remainders, as well as without.
Remainders should be interpreted according to the context (rounded up or down to relate
to the answer to the problem).

Formal Written Methods

Children to use partitioning to divide 2-digit and 3 -digit numbers, for example, $68 \div 2=34$

Introduce Bus-Stop Method:

Formal Written Methods

Continue to use partitioning, number bonds and placevalue counters to support the efficient use of a formal long division method.

Children begin to practically develop their understanding of how to express the remainder as a decimal or a fraction. Ensure practical understanding allows children to work through this (What could I do with this remaining 1? How could I share this between 6 as well?)

Sharing, Grouping, Repeated Subtraction and

 InverseChildren should progress in their use of written division calculations: Dividend just over 10 times the divisor when the divisor is a teen number, for example, $173 \div 15$ (and learning sensible strategies for calculations such as $102 \div 17$)

Children will continue to explore division as sharing, grouping, repeated subtraction and inverse, and to represent problems using the Bar Method if appropriate.

Quotients (results of division) should be interpreted appropriately for the context as a whole number, remainder, decimal or fraction.

Formal Written Methods - long and short

 divisionContinue to use partitioning, number bonds and place-value counters to support the efficient use of long and short division methods, including expressing remainder as a fraction or decimal.
$974 \div 25=$

$974 \div 25=38 \frac{24}{25}=38 \frac{96}{100}=38.96$

	0	3	8	\bullet	9	6
25	9	${ }^{9} 7$	${ }^{22} 4$	\bullet	${ }^{24} 0$	${ }^{15} 0$

Problem Solving

Teachers should ensure that pupils have the opportunity to apply their knowledge in a variety of contexts and problems (exploring crosscurricular links) to deepen their understanding.

